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Abstract

A modular process for performing general parametric studies about an aerodynamic
configuration using a Cartesian method is described. A novel part of this process is
the automatic handling of general control surfaces deflections based upon simple, user-
specified inputs. The article focuses on the use of aerodynamic databases in the design
process. Database fly-through is used to develop and analyze guidance and control
systems, and to evaluate performance data. Validation comparisons with experimental
data and Navier-Stokes simulations are presented for the Langley Glide-Back Booster
vehicle. Two example parametric databases with control surfaces deflections are pre-
sented: an autonomous Mars explorer aircraft which contains 4700 datapoints and two
movable elevons, and the Space Shuttle launch vehicle in ascent configuration with
gimbaling engine nozzles. The database for the Mars aircraft has been used to validate
a generic neural-network control system, and trajectory simulations using the shuttle
aerodynamic data are coupled with an optimization algorithm to develop a closed-loop
feedback pitch controller.
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1 Introduction

Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points
in a design space by performing steady-state computations at fixed flight conditions (Mach
number, angle of attack, sideslip), for a fixed geometric configuration of interest. This
isolated point analysis is typically performed using high fidelity methods at a handful of
critical design points, e.g. a cruise or landing configuration, or a sample of points along a
flight trajectory. Current research in CFD is aimed at extending the point analysis to rapidly
analyze the entire design space with high-fidelity tools - varying both flight conditions and
control surface deflections - in order to provide a broader picture of performance[1–4]. Such
a database is used both in initial design to quickly estimate performance, and in final design
to augment traditional methods such as wind tunnel tests and aerodynamic modeling. The
ability to rapidly assimilate an accurate database of aerodynamic performance using CFD
methods opens up new design possibilities for the engineer. The aerodynamic database can
be used with six-degree-of-freedom (6-DOF) trajectory simulations coupled to guidance and
control (G&C) systems. This ability to “fly” a design through an aerodynamic database in
faster-than-real-time enables performance estimates for prototypes to be rapidly evaluated,
and novel guidance and control (G&C) systems developed. The focus of the current work is
the development of automated and efficient tools for building aerodynamic databases, and
the use of controlled 6-DOF trajectories for evaluating vehicle designs using these databases.

A typical CFD aerodynamic database currently contains on the order of 104 – 106 data-
points, depending upon the problem requirements. In order to manage such a large number
of computations, automated tools are a necessity, not only for generating the data, but
also harvesting meaningful results in a post process. The current work uses a Cartesian,
embedded-boundary method[5] to automate the generation of a vehicle aerodynamic param-
eter study. The Cartesian method provides an efficient and robust mesh generation capability
which can handle an arbitrarily-complex geometry description. Recently, a method to gen-
erate the water-tight surface triangulation required for Cartesian mesh generation directly
from a CAD representation of the geometry has been developed[6]. This, combined with the
Cartesian embedded-boundary method provides a robust and automatic mesh generation
infrastructure which can be utilized through the design process. This meshing scheme is
combined with a parallel, multi-level scheme for solving the steady-state Euler equations,
either on shared- or distributed-memory architectures[7, 8].

In order to analyze the entire design space it is necessary to automate the analysis of
control surface deflections, as well as changes to the velocity vector. A novel part of the
current work is a general system of specifying and manipulating control surfaces using the
Geometry Manipulation Protocol (GMP)[9]. This system automatically re-generates the
appropriate rigid-body configurations from a geometry and control surface description. The
allowable rigid-body motions are extremely general, so that no new application code is
required to perform the geometry manipulation.

This paper first describes the software design of the modular infrastructure built to au-
tomatically perform parameter studies. This modular system is built around pre-existing
stand-alone applications (mesh generator, flow solver, force/moment calculator, etc.), us-
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ing scripts to provide a flexible “glue” between components. An overview of the 6-DOF
trajectory algorithms for database fly-through is also presented. The last three sections
present example aerodynamic databases and applications. First, a validation comparison
with both experimental data and Navier-Stokes simulations is presented for the Langley
Glide-Back Booster vehicle. Next, a database including 4700 datapoints for a prototype
autonomous biomorphic explorer for Mars[10] is included. The Mars flyer design has an
elevon on each wing to provide control power. This CFD database has been used to validate
a neural-network G&C system for future flight tests. Finally, a sample database for the
Space Shuttle Launch Vehicle (SSLV) in ascent configuration with gimbaling engine nozzles
is presented. This database is used to develop a feedback control system by coupling the
trajectory simulations with an optimizer module to provide optimal feedback gains. This
optimized controller is compared to data from the STS-107 flight of the SSLV.

2 Component Infrastructure

Flow Solver
 (parallel)

Mesh 
Generator

Velocity Space

Config Space

Steering Results 
Database

GMP Customized 
Output

Core Database 
Engine

Figure 1: Schematic of the modular set of software components for performing an automated CFD parame-
ter sweep. The stand-alone applications are shown in red, and the control scripts which glue the applications
together in green. Third-party application data is in blue. The purple box contains the core components:
added functionality simply wraps around this core.

Figure 1 shows a schematic of the modular set of software components used for building a
CFD aerodynamic database. The stand-alone applications are shown in red, and the control
scripts which glue the applications together in green. More details on the specifics of the
infrastructure will be provided after a brief overview. Note that several low-level support
scripts which are common to all of the tools are not described. The entire parameter space is
decomposed into a two-level hierarchy. At the lowest level is a velocity space which contains
the wind vector for each data point. This is characterized by the Mach number, angle of
attack, and sideslip angle (M∞, α, β). The next higher level contains a configuration space
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which represents all of the possible geometric configurations (e.g. control surface deflections,
δc) being tested. A single element of the configuration space contains all elements of the
velocity space. The rationale for this decomposition is the modular re-use of components.
Each element of the velocity space uses a fixed computational mesh, and is thus independent
of the configuration space, which requires a modified geometry and mesh for each element. In
other words, a parameter study can be computed using the velocity space in isolation, or as
a lower-level to a broader configuration space, without requiring modification of the velocity
space software components or architecture. The steering software links the configuration
space, velocity space, and the results database into a coherent unit. The steering software
monitors the results and determines which element of the parameter space to compute next,
and this command is sent to the configuration space control script (or directly to the velocity
space control script if only a single configuration is being examined). The configuration
control then passes this to the velocity space. This hierarchy of command control continues
through the process, with each control script being responsible for handling input and output
from their isolated section of the process. This is similar to an object-oriented framework,
though here a rigid object-oriented interface is not maintained.

Since the elements of the process infrastructure are independent, each can evolve in isola-
tion. For example, the steering software can be as simplistic as iterating through a uniform
parameter space following the matrix element ordering, or as complex as leveraging 3rd-party
neural-network toolkits. This flexibility is key to providing a system which can grow as more
experience is gained with building aerodynamic databases using CFD. Currently the steer-
ing software is intentionally straightforward: the parameter space is maintained as a regular
Cartesian mesh and traversed sequentially. In order for more complex adaptive steering
mechanisms to be utilized, a general unstructured data format and database interpolation is
required (cf. Sec. 2.3.1). This generalization is left for future work after experience is gained
using the current implementation.

The emphasis of the current work in on an automated process, hence the user interfaces
are at the highest level of the component hierarchy. The analyst is charged with provid-
ing inputs to the system, and harvesting results, however the control of the process is the
purview of the script system. This is necessary, as managing or steering tens of thousands
of computations by hand is not practical or desirable. The understanding is that if more
details are required about a certain isolated point, or set of points, the analyst will perform
a separate point analysis at those critical points.

One implicit assumption with the implementation of the infrastructure outlined in Fig. 1
is that there are no conflicts for CPU resources between the isolated parts of the process. In
other words, it is assumed that the lightweight processes of generating a mesh, or adding an
entry into the results database, will not interfere with the more compute-intensive flow solver
processes. In practice this is not a restrictive assumption. Most compute resources either
provide a front-end machine, or isolate a CPU or set of CPUs, which are responsible for job
scheduling, interactive terminal sessions, etc. Since the cost of mesh generation and post-
processing is amortized over thousands of flow solver runs, and these tasks run concurrent
with the flow solver, these lightweight processes do not adversely impact the overall parallel
efficiency.
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2.1 Velocity Space

The implementation of the velocity space control script is straightforward. The control
script sets the velocity space parameters which are inputs for the flow solver, creates any
required directory and file structures, and then executes the solver. After the solver finishes,
the aerodynamic coefficients are returned as results of the control script to the process
which executed the velocity space script. These coefficients are selected by the user, and can
contain items such as hinge moments or bending moments, in addition to the 6 aerodynamic
coefficients for the entire configuration (CA, CY , CN , Cl, Cm, Cn). The flow solver can execute
either on a single processor or in parallel. Filling a parameter space involves computing many
essentially identical problems, hence the parallelism is usually exploited on this coarser-
grained level, not at the finer level of the flow solver, however there is nothing which prohibits
combining both fine- and coarse-grained parallel strategies. The Cartesian solver does not
require case-specific inputs for each set of flow conditions, which greatly simplifies the velocity
space sub-system. The solver contains a hierarchy of robustness levels, with each increasing
level requiring more computing resources. The run strategy simply starts with the least
robust scheme, and proceeds up the hierarchy if a computation is numerically unstable. At
the highest level of robustness it is always possible to maintain numerical stability, though
it is still possible to generate spurious results, for example when computing an inherently
unsteady problem with a steady-state method. In practice these pathological cases are
relatively easy to filter, for example by monitoring convergence in residuals and computed
aerodynamic loads. The velocity space control script is responsible for creating the flow
solver runtime environment. Several interfaces are provided, including a simple interactive
runtime process, job management directly through the portable batch system (PBS)[11],
and an interface to the web-based AeroDB job control software[3]. Again, since the velocity-
space control scripts are self-contained they can evolve along with new runtime environments
without effecting the remainder of the process.

2.2 Configuration Space

One powerful feature of the Cartesian method is the ability to automatically create
a computational mesh about varying geometric configurations, as has been demonstrated
for computing bodies in relative motion[12, 13] and aerodynamic shape optimization[14].
Moving control surfaces within a static configuration space also requires the ability to “re-
mesh” changing geometric configurations. The complete set of control surfaces and their
possible deflections, or orientations, makes up the configuration space. This configuration
space is described using the ConfigSpace datatype from the GMP protocol. GMP is a set of
rules and datatypes for manipulating geometry for CFD applications. Only a brief overview
is provided here, and more information can be found in [9]. Each ConfigSpace is defined by
a set of Parameters (control surfaces), which are usually a single water-tight component (or
group of components) in the surface triangulation of the geometry. These Parameters take
either a finite number of discrete States, or a continuous range of values, which are specified as
rigid-body motions relative to the complete Configuration. The allowable rigid-body motions
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are extremely general, so that no new application code is required to perform the geometry
manipulation. The GMP specification is stored in an XML file, which can be parsed by
the application control script to determine the number of Parameters, how many States are
specified for each Parameter, etc. The application control script for the configuration space
thus looks very similar to the velocity space script, except that the matrix of parameters are
control surfaces and deflections, rather than changes to the velocity vector. The ConfigSpace
datatype also allows the specification of groups of Parameters and States, for instance a
coarse-, medium-, and fine-grained set of control surface deflections. A middleware layer
between the GMP specification and the Cartesian applications actually does the work of
translating the GMP Parameters and States into a unique geometric configuration.

2.3 Post-processing

One of the strengths of a modular process design is the ability to use 3rd-party tools
when practical. These tools are used in many parts of the process in Fig. 1, e.g. PBS,
GMP, and database software. The storage and search requirements for a CFD aerodynamic
database are relatively modest, so a tree-based database storage solution is not a necessity,
however the use of a standardized database does have benefits. Since database APIs are
static and supported by a large user community, a CFD database can be portable across
many application domains rather than focused on a niche. For example, a database with an
SQL or ODBC interface can easily be ported to web services. Similarly, a supported API
allows different domains, such as G&C, structures, and aerodynamics to speak a common
language, and build their individual tools on a known stable system. Further, the use of
a database software package allows the results of a CFD aerodynamic database to evolve
to include items such as flowfield images, documentation, or cutting planes, which would
be inconvenient to implement into a simpler format. SQLite[15] provides a nice compromise
between a full client-server database implementation, and a self-contained ad-hoc file format.
Rather than directly interface the post-processing applications to the database format, the
database results are customized to the needs of the post-processing applications through a
middleware layer. This approach again provides modularity and efficiency.

There are many post-processing applications which can utilize a CFD aerodynamic
database: interactive flow visualization[16, 17], multi-disciplinary optimization, performance
analysis, control law synthesis, etc. This focus of the current work is on the use of 6-DOF
trajectories to develop and analyze G&C systems. The next two sections provide an overview
of the algorithms and data structures required to fly a vehicle through a CFD database.

2.3.1 Multilinear Interpolation in d-Dimensions

The configuration and velocity spaces each contribute dimensions to the parameter space
P of the study of any given configuration. For example, a study examining Mach, α, and β,
with elevator, aileron and rudder deflections implies a 6-dimensional parameter space P =
P (M∞, α, β, δe, δa, δr). After building the aerodynamic database the aerodynamic coefficients
are known at discrete locations in this parameter space. In order to perform trajectory
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simulations it is necessary to integrate through the parameter space using a 6-DOF package
and control system model. At each timestep, the 6-DOF equations provide new conditions
in the velocity-space, while the flight control system provides a new set of configuration
parameters. Therefore, evaluating the aerodynamic coefficients for the vehicle at a new time
level becomes a problem in d-dimensional interpolation, where d is the number of dimensions
of P .

While a variety of approaches can be used for higher-dimensional interpolation, multilin-
ear interpolation[18, 19] is an attractive choice for a first attempt. Without adaptive steering,
the parameter space constitutes a regular Cartesian lattice in d-dimensions (a d-dimensional
hypercube). The aerodynamics coefficients are known at every node of this Cartesian grid.

z0 z1

z2 z3

p0

p1

x
Bounding hypercube

of target

Target location for 
interpolation

Figure 2: 2-D interpolation. In d dimensions this 2-D
projection becomes a hypercube, with data known at
the corners.

The sketch in Fig. 2 shows a 2-D pro-
jection of the interpolation problem. For
any target point xj with j ∈ {0, 1, ..., d− 1}
we must find the bounding hypercube in P ,
and then interpolate from the known data at
the corners of this hypercube. In d dimen-
sions, the bounding hypercube will have 2d

corners. The ith corner of of this cube has
coordinates zi = (zi0 , zi1 , ...zid−1

). The set
of all such corners is Z. For convenience,
we can denote the vector of aerodynamic
coefficients at this location as f(zi). If we
map this bounding hypercube to the interval
[0, 1]d, then multilinear interpolation gives
an interpolated value at the target xj.

f̂(x) =
∑
i∈Z

f(zi)
d−1∏
j=0

(
1−

∣∣xj − zij

∣∣)
=

∑
i∈Z

f(zi)wi(x)

(1)

where wi is the basis function associated with the ith corner of the hypercube, and wi(x)
is the weight of the ith corner node in computing f̂(x). The basis function for multilinear
interpolation is attractive since it has both d-fold symmetry, and a compact stencil. The
summation in Eqn. 1 simply accumulates contributions from each corner of the hypercube,
and hence the product is constant for each corner zi ∈ Z.

We find the bounding hypercube using successive binary searches in each of the d coor-
dinate directions, then map the search result to a unit hypercube, and lastly evaluate the
interpolation for all values of the aerodynamic coefficients (reusing the weights). Note that
in very high dimensional spaces, evaluation of Eqn. 1 can potentially be expensive. The sum
contains 2d terms, each of which is itself a product over d terms. This gives an overall com-
plexity of O(2d+1). Numerical tests suggest that modern floating-point chips give essentially
instantaneous results even for parameter spaces with as many as 15 dimensions.
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2.3.2 Controlled 6-DOF Integration

The general unconstrained motion of a rigid body is described by the Newton-Euler
equations of motion, which break the motion into a translation of the center of mass, and
a rotation about the body principal axis system. These 6-DOF equations are described in
detail in the appendix to[13], along with verification examples, and only an overview of the
features relevant to database traversal are discussed here. The GMP specification of 6-DOF
motion[9], which has previously been used for coupled CFD/6-DOF simulations, is re-used
here to specify the inputs for the database traversal. This allows automated tools to be
developed for trajectory optimization or performance evaluation. A controller optimization
example is included in Sec. 5.

Unlike solving the fully-coupled 6-DOF motion within a CFD simulation, where the
evaluation of the forces and moments on the body requires an expensive CFD flow solution, a
database traversal can evaluate the forces and moments efficiently at any time level using the
interpolation procedure outlined in the previous section. This allows the use of high-order
time-integration schemes for advancing the Newton-Euler equations. A 4th-order Runge-
Kutta (R-K) scheme with adaptive timestep control provides a self-starting integrator along
with an error estimator. With adaptive time resolution the integrated solution of each of the
individual equations of motion satisfies an accuracy constraint, allowing automated methods
to be developed. Here, Fehlberg’s modified R-K scheme[20] (denoted by R-K-F) is used. Two
integrated solutions are generated: one to 4th-order accuracy (y4), and one to 5th-order (y5).
The difference between them provides an error estimate for the timestep (e = |y4 − y5|). If
the error is below a predefined tolerance (emax) the 4th-order solution is accepted, otherwise
the procedure is repeated using a smaller timestep. The R-K-F scheme requires 6 evaluations
of the forcing function for each timestep. This is in contrast to the common approach in
adaptive timestep methods of recomputing the solution using half the original timestep and
Richardson extrapolation to determine the error. For a 4th-order R-K scheme this timestep-
halving method requires 11 evaluations of the forcing function at each step. The timestep is
continuously and smoothly varied using the error estimate, even if the solution satisfies the
accuracy constraint, according to

∆tn+1 = ∆tn
(

1

2

e

emax

)1/p

where p = 4 for a 4th-order scheme. This limits the number of times that the accuracy
constraint is violated and also smoothly increases (decreases) the timestep in benign (stiff)
regions, as the error estimate reacts to the slope of the solution. This approach is pre-
ferred over simpler halve/double/hold methods which halve or double the timestep when
required/possible, and hold it fixed otherwise.
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Integrate 6-DOF Eqns.
Update h, M, α, β

Query Aero Database
Compute R-K-F Slope

Update Control Settings δc

Figure 3: Coupled 6-DOF/controller up-
date algorithm.

It is often desired to couple a controller to the 6-
DOF integrator in order to direct the vehicle motion
during the trajectory. In the current scheme the al-
titude and velocity vector are continuously updated
within each R-K-F update step. After the solution
is advanced to the next time level, the controller is
called with the new state information, and the control
settings are updated for the next timestep (Fig. 3).
Future work will enhance this scheme by calling the
controller at a fixed sampling interval to more closely
model the actual system.

3 Validation of Aerodynamic Data - LGBB

Parametric studies on a 2nd-generation glide-back booster were conducted examining the
effects of Mach, α and β variation. The geometry in this analysis is the Langley Glide-Back
Booster (LGBB), a design for which there exists data from both experimental and Navier-
Stokes analyses [3, 4]. The upper left frame of Fig. 4 shows a view of the geometry and
Cartesian mesh. The vehicle has a cranked-delta planform, single tail, and canards. Since
the model did not have movable control surfaces, this database only varies the velocity vector.
Nevertheless, the presence of both independent experimental and simulation data over a wide
range of parameters makes it useful for establishing the credibility of the Cartesian method for
predicting aerodynamic performance. In total the aerodynamic database covered nearly 2900
flow conditions. The Mach number varied over [0.2, 6.0], α over [−5◦, 30◦], and β = [0◦, 4◦].∗

The run matrix includes 38 separate Mach numbers, 25 angles of attack, and 5 side-slip
angles, however not all Mach-α combinations were run for all values of side-slip angle.

Figure 4 gives an overview of the aerodynamic performance for this design. The Cartesian
mesh shown in the upper left frame has approximately 1.4 million cells and was used for
all subsonic and transonic cases. Supersonic cases used a smaller computational domain
with approximately the same total cell count. The other frames in Fig. 4 contain carpet
plots showing the variation of lift, drag, and pitching moment coefficients with variation of
Mach number and angle-of-attack. The sideslip angle is fixed at β = 0◦ in these plots. These
figures all show mild behavior at supersonic Mach numbers with more non-linear behavior as
the configuration passes through M∞ = 1. The carpet plot of drag vs. Mach number and α
shows the characteristic transonic drag rise through M∞ = 1, a feature that is dramatically
exacerbated with increasing angle-of-attack. Beyond Mach 1, the drag coefficient drops
off as the shocks lay back in the accelerating flow in accordance with gas dynamic theory.
Also as expected, pitching moment shows the most variation in the transonic flight regime
as small changes lead to large movements of the shock system on the vehicle. Obviously,
these carpet plots are only one slice through the full aerodynamic database (at β = 0), and

∗The LGBB geometry possesses bi-lateral symmetry, thus it is unnecessary to compute negative sideslip
conditions.
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Figure 4: LGBB design with Cartesian mesh, and carpet plots showing the variation of lift, drag, and
pitching moment with Mach number and angle of attack at β = 0◦.

the data shown account for only about 20% of the cases run. Once the multi-dimensional
aerodynamic database is computed, it is a straightforward task to examine the data using
such lower-dimensional projections or slices. Nevertheless, visualization and feature detection
in the full multi-dimensional dataset remains a research topic.

Figure 5 establishes confidence in the database through direct comparison with exper-
imental data and Navier-Stokes simulations performed using NASA’s Overflow solver[21].
This figure examines the variation of lift, drag, and pitching moment with angle-of-attack
at Mach 1.6 and 2.0 while holding β fixed at 0 deg. Both simulation codes agree extremely
well with the experimental data in lift and drag through to α = 30◦. Pitching moment for
both simulation codes follows the data well to α = 15◦, and at higher angles of attack both
codes over-predict the restoring moment. While Overflow does predict slightly less error in
pitching moment at these high-angle-of-attack conditions, Cart3D produces an entire alpha
sweep for the cost of a single Navier-Stokes solution. This accuracy and efficiency, combined
with the automation of the Cartesian method for handling configuration changes, provides
an excellent tool for building aerodynamic performance databases.
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Figure 5: Comparison of lift, drag, and pitching moment for the LGBB with experimental data and Navier-
Stokes results from [3] (β = 0◦).

4 BEES Flyer Example

Figure 6: Prototype of the BEES flyer geometry (cf. Ref. [10] for more
details).

In this example, we
demonstrate the use of both
the velocity and configura-
tion space components pre-
sented in Sec. 2 with a
parametric study of an au-
tonomous flyer. The bio-
inspired engineering of ex-
plorations systems (BEES)
flyer is envisioned as a small
platform with sensing and
control systems mimicking
those of biological systems,
for scientific exploration on
the surface of Mars[10]. The
current BEES flyer is a
delta-wing with twin ver-
tical tails and two elevons
which provide pitch and
roll control of the aircraft
(cf. Fig. 6). Note that the outer-mold line of the flyer has not been optimized for a spe-
cific science mission on Mars, rather it is used as a generic test-bed for the development
of adaptive flight control systems and sensors[10]. In order to evaluate the aerodynamic
characteristics of the flyer, and to provide stability and control (S&C) information for the
development of the flight control system, a database is computed over the expected flight
domain. The flyer uses a prototype neural-network-based adaptive flight control system be-
ing developed at NASA Ames[22]. The CFD-generated aerodynamic data is used to validate
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and extend the controller developed using wind tunnel data.

Figure 7: BEES flyer geometry with a cutting plane through
the Cartesian mesh. The triangulated surface geometry was gen-
erated directly from a CAD solid model. Colors denote separate
water-tight components of the configuration.

The BEES flyer geometry was
obtained from a CAD solid model∗,
and is shown with a cutting plane
through the computational mesh in
Fig. 7. Each mesh contains approx-
imately 1.5 million cells, with a
finest refinement of 1.5 mm. As the
elevons change position, the Carte-
sian meshing scheme responds to
the change in surface definition and
refines and coarsens the mesh ap-
propriately. This causes the to-
tal number of cells in the mesh
to vary depending upon the elevon
settings.

The aerodynamic database uses
the following five parameters:

Configuration space :
Independent deflections of
the left and right elevons.
The deflection range is from
20 deg. trailing-edge down to
10 deg. up in 5 deg. incre-
ments resulting in 7 discrete
settings for each elevon.

Velocity Space :
Mach numbers: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8
Angle of attack: -10 to 15 deg. in 5 deg. increments
Sideslip angle: 0 deg. and -10 deg.

This combination of parameters results in 4704 independent analysis cases that include 49
configurations.

The results for the velocity space at the neutral elevon settings indicate that the perfor-
mance of the present design is sufficient for subsonic flight at low angles of attack. However,
the database also reveals that the drag-divergence Mach number is relatively low, roughly
0.7, and the drag rise quite severe. For the configuration space, Fig. 8 shows example re-
sults of the changes in roll and pitch as a function of different elevon deflection settings at
M∞ = 0.6, α = 5.0◦. The spheres denote discrete sample points. As expected, the aerody-
manic coefficients behave smoothly and are consistent with the symmetry line of elevon
deflection.

∗The CAD model was provided by the Australian National University.
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Further insight is provided by flow visualization, which is shown in Fig. 9. Here, 49 surface
pressure distributions corresponding to the changing elevon deflection angles are shown at
constant M∞ = 0.6, α = 10.0◦. White regions in the figures denote supersonic flow. The
influence of the propeller slot, as well as changes in the shock positions and aft-loading due
to asymmetric elevon deflections is clearly seen. Furthermore, this flowfield visualization has
also been used for identifying scientific sensor locations on the flyer to minimize interference
from the flow.
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Figure 8: Variation of rolling and pitching moment with elevon deflection for the Mars flyer. The white
spheres represent actual data-points. (M∞ = 0.6, α = 5.0◦, β = 0.0◦).

5 Space Shuttle Example

Even though NASA is actively engaged in the return-to-flight (RTF) initiative for the
SSLV, both NASA and commercial groups are designing and analyzing the next generation
of space-launch vehicles. A good example is the mission analysis for the LGBB concept of
Pamadi et al. [23], which used engineering tools and wind tunnel data for the aerodynamic
database. Before analyzing novel vehicles, the wealth of data associated with the SSLV can
be used to develop and validate the existing methodology. As a first step in this effort, a
simplified aerodynamic database for the SSLV in the ascent configuration is created with the
automated Cartesian mesh toolset and used to develop a pitch controller.

5.1 Aerodynamic Database

The SSLV in the ascent configuration contains a number of active control surfaces: the left
and right solid-rocket booster (SRB) engines, the 3 Space Shuttle main engines (SSMEs), and
inner and outer elevons on each wing. These 9 control surfaces, along with the 3 components
of the velocity vector lead to 12 independent parameters. If each of these parameters were
given only 5 states it would lead to almost 250,000 datapoints, which is far more than
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Figure 9: Surface pressure variation with elevon deflection for the Mars flyer. (M∞ = 0.6, α = 10.0◦, β =
0.0◦).

desired for an initial test. Since the elevons are used for wing load-relief during ascent, and
not control, they are held fixed. Also, initially we are only interested in pitch control, so the
left and right SRB engines and the left and right SSMEs can be treated as coupled. Further,
the SSLV stack can be assumed to possess lateral symmetry. While this is not strictly true,
the deviations are small and consistent with the desired level of modeling. This reduces the
parameter space down to 3 control surfaces - the coupled SRB engines (δSRB), the center
SSME (δc), and the coupled left and right SSMEs (δlr) - and 2 components of the velocity
vector - Mach number and angle of attack. Since the current effort involves modeling the
engine thrust, and engine performance varies with altitude, altitude is another independent
parameter, albeit one that is loosely coupled to Mach number as the vehicle does not leave the
launch pad at high Mach number. As a simplification, the altitude is chosen to be the median
altitude over the Mach number range of interest. This Mach number/altitude correlation is
determined from SSLV pre-flight tables. The simulated 6-DOF trajectories occur after the
maximum q-loading condition the shuttle experiences, so all engines are at full power. The
Mach number range is chosen as M∞ = [1.5, 3.5], which roughly corresponds to the period
of maximum acceleration for the complete shuttle stack. The chosen angle-of-attack range
is [−4◦, 4◦].
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Figure 10: Cutting plane through the lateral sym-
metry plane of the Cartesian mesh for the SSLV. Pre-
specified adapation regions were supplied to resolve
the engine plumes. Colors denote separate water-tight
components of the configuration.

An overview of the SSLV ascent con-
figuration and a cutting plane through the
Cartesian mesh is shown in Fig. 10. Prespec-
ified adapation regions were supplied to re-
solve the engine plumes. Colors denote sep-
arate water-tight components of the configu-
ration. Each mesh contains roughly 1.8 mil-
lion cells for a half-body configuration. The
major details of the geometry are modeled,
including the fore and aft attach hardware,
the liquid oxygen feedline, the stringers aft
of the ogive section of the external tank
(ET), separated wing elevons and tail rud-
ders, the orbital maneuvering system pods,
the body flap, and the details of the SRB
and SSME nozzles.

A full description and validation of the
approach for simulating engine power set-
tings within the Cartesian method is pro-
vided in a companion paper[24]. The de-
tails of the geometry for each engine nozzle
is modeled from the combustion chamber to
the exit nozzle. Figure 11 shows an SSME nozzle with partial cutaway to highlight the details
of the internal nozzle geometry. Each engine nozzle uses a torus-shaped shroud geometry
which connects the exterior surface of the nozzle to the SRB or orbiter. This shroud moves
with the engine nozzle as it pitches and yaws. The SRB nozzles deflect ±5◦ in both pitch and
yaw, and each SSME nozzle pitches ±10.5◦ and yaws ±8.5◦. The SRB engines are aligned
with the longitudinal axis of the SRB in the zero-deflection orientation, while the center
SSME nozzle is canted upwards 16◦ in the neutral orientation (cf. Fig. 11). The neutral
position for the left and right SSMEs is rotated 10◦ upwards, but in the current test they
are not canted outwards, even though 3.5◦ of yaw corresponds to the neutral position. The
current unyawed orientation is sometimes referred to as a “pitch-lock” orientation for the
SSMEs, and can be used for pitching maneuvers. The current work computes aerodynamic
data with the SRB and SSME nozzles pitching over their full range of motion, however since
we are only interested in pitch control, none are allowed to yaw. Plenum conditions are
specified at the combustion chamber boundary as flow solver inputs for each engine. These
conditions were supplied from real-gas simulations at the desired operating conditions[25].

Each of the 5 independent parameters is allowed to vary over 3 states (min., median, and
max.), leading to 243 datapoints in the aerodynamic database. While this initially seems
coarse, in the parameter range being examined most of the effects are expected to behave
linearly, so that 3 states is sufficient, especially for a preliminary test. This can be seen in
Fig. 12 which shows carpet plots of the normal force and pitching moment variation with
pitch of the SRB and center SSME nozzles at M∞ = 2.5, α = 0.0◦. The aerodynamic
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Figure 11: Details of the SSME nozzle and orbiter aft end, showing the SRB and SSME gimbaling of the
nozzles.

response at these conditions is relatively benign. The effect of SRB and center SSME pitch
on the flowfield can be seen in Fig. 13, where a matrix of flow visualization pictures of Mach
number contours on the lateral symmetry plane are presented at M∞ = 2.5, α = 0.0◦. The
plumes entrain most of the low-speed, separated flow behind the bluff afterbodies of the
ET and orbiter. Interference between the center and left/right SSME plumes is visible. A
normal shock forms below the mid-chord station of the orbiter wing at these flow conditions.
Upstream of this location the contours are unchanged with nozzle deflection, consistent with
a supersonic flowfield. After verifying and validating the current aerodynamic response and
trajectory simulation tools, a refined database will be built using a general adaptive steering
capability over a wider range of the parameter space.

5.2 Controller Optimization

The SSLV flies with an open-loop controller, using a table-lookup to determine the noz-
zle deflections, during the first stage of the ascent (while the SRBs are still attached). The
current work attempts to develop a closed-loop feedback control system for the SRB and
SSME pitch deflections using the computed aerodynamic database described in the pre-
vious section. The simulated trajectory is described in Fig. 14. The trajectory begins
at a nominal mission elapsed time (MET) of 69 sec., at an altitude of 47,000 ft. and a
Mach number of 1.75. The controller is commanded to maintain a constant angle of attack
of 3◦ and flight path angle of 30◦. The trajectory simulation is run for 27.5 sec., which

16



(a) Normal Force (b) Pitching Moment

Figure 12: Aerodynamic response to SRB and center SSME nozzle deflections. White spheres represent
actual datapoints, color corresponds to magnitude of dependent variable (M∞ = 2.5, α = 0.0◦).

 Center SSME

 L
ef

t S
RB

Velocity  Magnitude

Velocity  Magnitude

-10.5° 0° 10.5°

-5°

5°

0°

Figure 13: Changes in Mach number contours (red is high, blue is low) on the lateral symmetry plane in
response to SRB and center SSME nozzle deflections (M∞ = 2.5, α = 0.0◦).

roughly corresponds to the period of maximum acceleration for the complete shuttle stack.
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Figure 14: Simulated trajectory for
controller optimization.

The inertial properties of the SSLV were held fixed for
the duration of the trajectory. This simplification ignores
changes in the mass and moments of inertia due to fuel
burn, and also the movement of the center of mass loca-
tion due to fuel burn and “sloshing” of the liquid fuel in
the ET. Models for these effects can be incorporated in a
straightforward manner with the existing 6-DOF process
if higher-fidelity trajectory results are required.

A proportional (P), integral (I), differential (D) con-
troller (cf. Fig. 15) is used for each engine nozzle, according
to

δ = KP e + KI

∫
edt−KD

de

dt
(2)

where e is the error between the command and measured
angle of attack. Since the PID controllers for each noz-
zle are decoupled, the amplifier gains (KP , KI , KD) form
9 independent variables (3 for each control surface nozzle)
which define the control system. Manually determining the gains for a single-variable con-
troller by trial and error, or using a model problem, is relatively straightforward, however
for a complex multi-variable system such as the current one, manual tuning is prohibitive.
The current example demonstrates the utility of trajectory simulations through a CFD aero-
dynamic database by coupling the 6-DOF database trajectory module with an optimization
package to determine optimal values for the 9 controller gains for the specified mission.

Control 
Setting

command Σ
+

P

I

D

error Σ

++

-
output

Sensorfeedback

-

Figure 15: Schematic of a PID controller.

The optimizer uses a genetic algorithm (GA) developed by Holst and Pulliam[26], as the
design space is likely multi-modal. Once the aerodynamic database is constructed, the cost
of each trajectory simulation is essentially zero, so that the strength of a GA optimizer can be
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utilized. The selection operators of the GA (passthrough, average crossover, and mutation)
were set to maintain a diverse population of candidate solutions and therefore avoid local
optima. The objective function was chosen as the RMS-error of the angle of attack over the
complete trajectory,

J =

√√√√ 1

N

N∑
n=1

(α(tn)− αc)
2

The convergence of the optimizer with GA evolution cycle is shown in Fig. 16, and the
optimal controller gains are in Table 1. The KI gain for the left/right SSME reached the
minimum allowed value, which likely inhibits further convergence, though the resulting error
is still very low.
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Figure 16: Convergence of the GA objective function.

Controller KP KI KD

δSRB -48.51 128.3 13.42
δc -94.78 16.80 26.07
δlr -83.12 -100.0 -50.89

Table 1: Optimal controller gains computed for the trajectory described in Fig. 14.

The maximum error in angle of attack at any instance in the trajectory computed with
the optimal controller gains is 0.015◦ (cf. Fig. 17). The initial trim position of the trajectory
simulation appears to be inconsistent with the controller, hence initially the controller must
correct this error. This also likely limits the convergence of the optimizer. The SRBs and
center SSME operate in-phase, while the left/right SSME provide an out-of-phase counter-
balance. This requires the left/right SSMEs to provide more power (greater pitch amplitude).
The Mach number and altitude of the optimal simulated controller are compared to the STS-
107 trajectory in Fig. 18. The STS-107 flight is close to a nominal SSLV ascent trajectory.
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The simulated trajectory climbs faster than the STS-107 flight, though overall the comparison
is favorable, especially for an initial qualified test.
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Figure 17: Error in angle of attack, and engine controller positions for the trajectory computed with the
optimal controller gains.

6 Future Work

A modular process for performing parametric studies about a configuration using a Carte-
sian method has been described. This process leverages existing stand-alone applications for
performing isolated steady-state simulations, and glues them together with control scripts to
provide functionality for building aerodynamic databases. A novel part of this process is the
automatic handling of general control surface deflections based upon simple, user-specified
inputs. Several examples of building an aerodynamic database using the automated Carte-
sian CFD method were presented, both with and without moving control surfaces. These
examples highlight the use of an aerodynamic database to develop and analyze G&C systems
and performance requirements. With the basic infrastructure in place and tested, improve-
ments can be initiated. These will initially involve two main areas: adaptive steering, and
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Figure 18: Comparison of the trajectory computed with the optimal controller gains and the STS-107
trajectory.

validating and augmenting the SSLV aerodynamic database.
Steering is a critical component of developing an aerodynamic database as it directly

impacts both efficiency, by optimizing the benefit for a fixed amount of work, and the
accuracy by placing datapoints where there are abrupt changes in the S&C derivatives.
This choice of a steering strategy is loosely coupled to the use of the database in analysis
programs. A general adaptive steering capability requires an unstructured data format and
complex interpolation algorithms. This data format capability will be developed and tested
with various steering strategies using the example configurations examined in this paper.

The aerodynamic database built for the SSLV is an initial effort. The aerodynamic
response will be validated against available data and comparison with Navier-Stokes sim-
ulations from the Overflow solver. With a validated process, refinements to the database
and trajectory modeling can be pursued if necessary. The capability to automatically and
efficiently generate any ascent configuration for the SSLV, including operating engine noz-
zles is an important part of ongoing RTF efforts. The current automated Cartesian method
can be utilized in rapid-response, launch-day simulations, or other time-critical high-fidelity
analyses.
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